ÜBER DIE SYSTEME TlX/MnX₂ UND AgX/MnX₂ (X = Cl, Br, I)*

H. J. SEIFERT, T. KRIMMEL und W. HEINEMANN

Institut für Anorganische und Analytische Chemie der Universität Gießen, B. R. Deutschland

(Eingegangen am 26. September, 1972; in revidierter Form am 8. Dezember, 1972)

The systems TlX/MnX₂ and AgX/MnX₂ (X = Cl, Br, I) were investigated by means of differential thermal analysis. The systems AgCl/MnCl₂ and AgI/MnI₂ are purely eutectic. AgBr and MnBr form partially mixed crystals at higher temperature. In the systems with the thallous halides compounds are formed. TlMnCl₃ and Tl₄MnI₆ melt congruently, TlMnBr₃ and TlMnI₃ incongruently. The latter two crystallize in the orthorhombic NH₄CdCl₃-type

Unsere bisherigen Untersuchungen über Chlorometallate(II) [1] haben gezeigt, daß den Systemen der Mangan(II)-halogenide zusammen mit denen der Cd-halogenide eine zentrale Stellung zukommt [2], denn die in ihnen auftretenden Verbindungen AMeCl₃ bilden den Übergang zwischen den Perowskitstrukturen mit allseitig eckenverknüpften Oktaedern (z. B. CsCaCl₃) zum hexagonalen CsNiCl₃-Typs mit flächenverknüpften Oktaedern. Wir haben daher auch die Systeme TIX/MnX₂ und AgX/MnX₂ (X = Cl, Br, J) gemessen, über die bis auf das System TICl/MnCl₂ [3] noch keine Untersuchungen vorlagen.

Experimentelles

Die Differentialthermoanalysen wurden in einer schon früher beschriebenen Apparatur [4] durchgeführt. Im allgemeinen wurden Abkühlkurven gemessen, beim System AgBr/MnBr₂, in dem Mischkristallbildung auftrat, auch Aufheizkurven. Die Substanzen (ca. 1 g) befanden sich in Quarztiegeln von 13 mm Innendurchmesser. Um Verdampfungsverluste an Thalliumhalogeniden zu vermeiden, wurde zur Untersuchung der MnX₂-reichen Seiten der Systeme separat dargestelltes TlMnX₃ eingesetzt; die TlX-reichen Seiten wurden in verschließbaren Tiegeln mit einer Apparatur der Fa. Linseis, Selb, gemessen. Die Pt/PtRh-Thermoelemente waren geeicht gegen KClO₄ (Up. = 299.5°), Zn (Fp. = 419.5°), K₂CrO₄ (Up. = $= 665^{\circ}$) und NaCl (Fp. = 800°). Die Meßgenauigkeit lag bei ± 0.5 Mol-% und – bedingt durch Unterkühlungen – zwischen ± 2 und 4°.

* 13. Mitteilung über Halogenometallate(II). Diese Mitteilung bildet einen Teil der Staatsexamenarbeit von T. Krimmel und W. Heinemann, Gießen, 1972. Die Manganhalogenide wurden aus den Hydraten dargestellt, die im Halogenwasserstoffstrom entwässert und geschmolzen wurden. Die Verbindungen TlMnX₃ wurden in geschlossenen Quarzampullen in einem Schüttelofen synthetisiert. Die Silber- und Thalliumhalogenide waren käufliche Produkte der Qualität "reinst". Röntgenpulveraufnahmen der Verbindungen, die sich in mit Mylar-Folie abgedeckten Präparathaltern befanden, erfolgten mit einem Zählrohrgoniometer der Fa. Philips, Eindhoven. Ansonsten wurden Guinier-Aufnahmen nach der Simon-Methode [5] angefertigt. Eine Hochtemperaturufnahme wurde freundlicherweise von der Arbeitsgruppe Prof. Gruehn, Gießen, in einer Kamera angefertigt, in der Guinier-Aufnahmen bei kontinuierlicher Temperaturänderung aufgenommen werden können.

Meßergebnisse

Für die Ausgangssubstanzen wurden folgende Erstarrungstemperaturen (Fp. in °C) gemessen: $MnCl_2 = 650$; $MnBr_2 = 698$; $MnJ_2 = 636$; TlCl = 427; TlBr = 462; TlJ = 438; AgCl = 455; AgBr = 430; $AgJ = 577^{\circ}$.

System $TlCl/MnCl_2$: Wie schon Natzwlischwili und Bergman [3] fanden, existiert eine kongruent-schmelzende Verbindung $TlMnCl_3$ (Fp. = 497°). Die Eutektika

Abb. 1. System TlBr/MnBr₂

liegen bei 326° und $20.0 \text{ Mol-}\% \text{ MnCl}_2$ bzw. 462° und $62.0 \text{ Mol-}\% \text{ MnCl}_2$. Der Festpunkt der Verbindung stimmt überein mit dem von [3] gefundenen Wert, weicht aber stark ab von den 570° , die Kestigian [6] fand.

System TlBr/MnBr₂ (Abb. 1): Es existiert eine inkongruent-schmelzende Verbindung TlMnBr₃. Das Eutektikum liegt bei 355° und 22.5 Mol-% MnBr₂, der peritektische Punkt bei 439° und 48.0 Mol-% MnBr₂.

Abb. 2. System TIJ/MnJ₂

System TlJ/MnJ_2 (Abb. 2): Es treten zwei Verbindungen auf: Tl_4MnJ_6 schmilzt gerade noch kongruent (Fp. = 360°), $TlMnJ_3$ schmilzt inkongruent (Peritektikum bei 364° und 40.0 Mol-% MnJ₂). Das Eutektikum liegt bei 340° und 31.5 Mol-% MnJ₂.

Systeme $AgCl/MnCl_2$ und AgJ/MnJ_2 : Beide Systeme sind vom einfach-eutektischen Typ. Eutektika: 446° und 30.0 Mol-% MnCl₂ bzw. 456° und 24.0 Mol-% MnJ₂.

System AgBr/MnBr₂ (Abb. 3): Auf der AgBr-reichen Seite tritt unterhalb 456° Mischkristallbildung auf. Dieses Gebiet reicht bei dieser Temperatur bis ca. 20 Mol-% MnBr₂; der Übergangspunkt der Liquiduskurve liegt bei 17.0 Mol-% MnBr₂. Die Punkte der Soliduskurve wurden Aufheizkurven von Proben entnommen, die im Mischkristallgebiet bei ca. 400° getempert worden waren. *Röntgenpulveraufnahmen:* Röntgenpulveraufnahmen geeignet ausgewählter Zwischengemische verglichen mit denen der Ausgangsverbindungen bestätigten die Ergebnisse der thermischen Analysen. (Beim Vorliegen inkongruent-schmelzender Verbindungen wurden die Proben zur völligen Einstellung der heterogenen Gleichgewichte kurz unterhalb der peritektischen Temperaturen einige Tage getempert, bevor sie weiter untersucht wurden.)

Abb. 3. System AgBr/MnBr₂

Zum Nachweis der Mischkristallbildung im System AgBr/MnBr₂ wurde von einer Probe mit 13.0 Mol-% MnBr₂ von T_z bis zum Schmelzpunkt eine kontinuierliche Guinier-Aufnahme angefertigt. Die ursprünglich vorhandenen Reflexe des MnBr₂ verschwanden je nach Intensität zwischen 180 und 300°. Die Gitterkonstante des AgBr (5.77 Å bei T_z) stieg bis auf 5.87 Å bei 375°. Dies steht in Einklang mit unseren Erfahrungen bei der Untersuchung des Systems LiBr/MnBr₂ [7], wo durch Einbau von MnBr₂ in das Kochsalzgitter des LiBr ebenfalls eine Gitteraufweitung eintritt.

Röntgenstrukturuntersuchungen

Die Struktur des Tl_4MnJ_6 konnte aus Pulveraufnahmen nicht ermittelt werden. TlMnCl₃ kristallisiert im kubischen Perowskittyp mit a = 5.021 Å, wie schon von anderen Autoren gefunden worden war [6, 8]. Ungeschmolzenes MnBr₂,

Tabelle 1

Pulveraufnahmen des TIMnBr3 und TIMnJ3 (CuKa-Strahlung)TIMnBr3: a = 9.383 Å; b = 15.27 Å; c = 4.039 Å; Z = 4; $D_{\text{ber}} = 5.77$; $D_{\text{pykn}} = 5.73$ TIMnJ3: a = 10.078 Å; b = 16.17 Å; c = 4.297 Å; Z = 4; $D_{\text{ber}} = 6.07$; $D_{\text{pykn}} = 6.00$ (Gegenüber den International Tables sind die Parameter x und z vertauscht und somit
die Auslöschungsbedingungen entsprechend verändert)

h k l	Int.	TlMnBr ₃		Int	TIMnJ ₃	
		dgef	d _{ber}		dgef	dber
200	s	4,7157	4,6915	55	5.0635	5 0390
210		4.4892	(4.4847	m	4 8019	[4 8107
130	sst	1.1052	4 4745		1.0015	4 7522
220	ss	4.0082	3 9973		_	4 2762
011	m	3.8968	3.9048	s	4 1487	4.1528
111	s	3,5956	3,6050	-		3 8396
140	55	3.5586	3.5364	s	3 7603	3 7513
230	55	3 4 3 4 4	3 4499	8	3 6746	3 6806
121	m	3 3360	3 3369		5.0740	3 5509
310	m	3.0620	(3.0641	st	3 2829	[3 2891
201	***	5.0020	13.0609	50	5.2027	3 2696
211	sst	2 9996	(3.0012	sst	3 2019	(3 2047
131	330	2.7770	12 9982	330	5.2017	3 1873
240	st	2 9682	2 9613	et	3 1530	3 1529
150	set	2.9032	2.9044	cet	3 0805	3 0788
320	eet	2.9171	2.2044	551	3 000/	3 1021
221	st	2.8700	2.8743	et	3 0334	3 0311
1/1	m	2.6517	2.6412	m	2 8 2 7 1	2 8250
250	111	2.5544	(2.5507	- 111 	2.8271	2.8257
060	m	2.3344	2.557	5	2.7121	2.7213
160	711 66	2 4729	2.5455	m	2.0901	(2 6031
311	33	2.4/27	(2.4300	111	2.0003	2.0031
051	et	2 1261	2.4411]		(2.0117
340	51	2.4304	2 4 1 9 5	ot	2 5820	12.5850
240		2.4219	2.4193	SL	2.3029	2.3633
410	55	2.3920	2.3002	55	2.3400	2.3420
410	111	2.3176	2.3100	111	2.4913	2.4093
420	55	2.2424	2.2423	S	2.4037	2.4034
200		1 2202	2.2373	SS	2.3/44	2.3761
420	s	2.2202	2.2244		2 2927	2.3733
430	m	2.1290	2.1305	m	2.2827	2.2824
241	s	2.0961	2.0988	m	2.2150	2.2204
341	m	2.0723	2.0756		0 1701	2.2141
401	m	2.0222	2.0285	S	2.1/31	2.1/34
411		20096	2.0195	m	2.1493	2.1483
411	SS	2.0080	2.0108		2 1007	2.1341
270	m	1.9830	1.9/83	m	2.1007	2.0996
300		1.05(0	1.9/42			2.1019
201	S	1.9568	1.9571		-	2.0794
080	SS	1.9132	1.9090	s	2.0136	2.0209
431	m	1.8805	1.8844			2.0157

J. Thermal Anal. 6, 1974-

h k l	Int	TlMnBr ₃		Int	TlMnJ ₃	
	1 <u>11</u> t.	dgef	d _{ber}		dgef	d _{ber}
171			1.8806	m	1.9935	1.9941
450	s	1.8603	1.8604			1.9874
132	SS	1.8315	1.8347	s	1.9561	1.9577
520			1.8224			1.9557
441	-	-	1.7913	m	1.9118	1.9142
271	s	1.7730	1.7766	s	1.8879	1.8864
280	[1.7682	-	_	1.8757
181	s	1.6990	1.6975	s	1.8011	1.7994
511	SS	1.6876	1.6914	s	1.8124	1.8133
451			1.6898			1.8038
312			1.6862	s	1.8011	1.7987
242	ss	1.6648	1.6685	s	1.7762	1.7755
521			1.6611			1.7800
152	m	1.6526	1.6581	m	1.7647	1.7619
322			1.6562			1.7663
371	SS	1.6358	1.6360	_	-	1.7401
281	s	1.6198	1.6198	_	-	1.7190
332	s	1.6106	1.6095	-	_	1.7158
470	s	1.5988	1.5976		_	1.7025
461	m	1.5858	1.5863	s	1.6918	1.6917
252	[[1.5855	1		1.6863
062			1.5820	_		1.6799
541	s	1.5447	1.5544	£S	1.6562	1.6632
342			1.5504			1.6519
191			1.5431	-		1.6354

das bei 300° im HBr-Strom entwässert worden war, zeigte nicht alle Reflexe des CdJ_2 -Typs. Die Pulveraufnahme ließ sich mit einer primitiven hexagonalen Zelle der Abmessung a = 2.237 Å; c = 6.262 Å indizieren, was auf eine ungeordnete Schichtabfolge hindeutet.

Struktur der Verbindungen $TlMnBr_3$ und $TlMnJ_3$: Pulveraufnahmen beider Verbindungen ließen sich orthorhombisch in Anlehnung an das im NH_4CdCl_3 -Typ kristallisierende KCdCl_3 [9] indizieren (Tab. 1). In Abb. 4 sind die für das $TlMnBr_3$ gefundenen Intensitäten berechneten gegenübergestellt, wobei die Annahme gemacht wurde, daß die Punktlagen in der Raumgruppe D_{2h}^{16} für $TlMnBr_3$ die gleichen sind, wie für KCdCl_3. Die gute Übereinstimmung zeigt, daß die Annahme von Isotypie berechtigt ist.

Setzt man die Thalliumverbindungen in Beziehung zu den Alkaliverbindungen AMnX₃, so stellt man fest, daß sie nicht wie die Rb-Verbindungen RbMnCl₃ [10] und RbMnBr₃ [7] in hexagonalen Strukturen kristallisieren, obwohl Rb⁺ und Tl⁺ mit 1.49 Å gleiche Goldschmidt-Radien besitzen. (Die Systeme Alkalijodid/ MnJ₂ sind noch nicht untersucht.) Sie sind vielmehr analog den K-Verbindungen ($r_{K+} = 1.33$ Å) gebaut, denn KMnCl₃ besitzt eine kubische Hochtemperaturmodifikation [6] und KMnBr₃ [7] kristallisiert wie TlMnBr₃ im NH₄CdCl₃-Typ.

Abb. 4. Vergleich von berechneten und gemessenen Intensitäten des TIMnBr₃

Wir führen dies auf die stark polarisierende Wirkung des Tl⁺-Ions auf die Halogenidionen zurück, die gleichbedeutend einer effektiven Verkleinerung des Ionenradius ist.

Wir danken der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung dieser Arbeit, dem Fonds der Chemischen Industrie für die Gewährung zweier Stipendien. Dank gebührt weiterhin Herrn Dipl. Chem. Plies für die Anfertigung der Hochtemperaturaufnahme sowie dem Mineralog. Institut für die Erlaubnis, ein Zählrohrgoniometer zu benutzen.

Literatur

- 1. H. J. SEIFERT und A. WÜSTENECK, 12. Mitteilung: Inorg. Nucl. Chem. Letters, 8 (1972) 949.
- 2. H. J. SEIFERT und U. LANGENBACH, Z. Anorg. Allgem. Chem., 368 (1969) 36.
- 3. J. R. NATZWLISCHWILI und A. G. BERGMAN, J. allg. Chem. (UdSSR) 9 (1939) 642.
- 4. H. J. SEIFERT und K. KLATYK, Z. Anorg. Allgem. Chem., 334 (1964) 113.
- 5. A. SIMON, J. Appl. Crystallogr., 3 (1970) 11.
- 6. M. KESTIGIAN, Mater. Res. Bull., 5 (1970) 263.
- 7. H. J. SEIFERT und E. DAU, Z. Anorg. Allgem. Chem. 391 (1972) 302.
- 8. A. ZODKEVITZ und J. MAKOVSKY, Israel J. Chem., 8 (1970) 755.
- 9. C. H. MACGILLAVRY, H. NIJVELD, S. DIERDORP und J. KARSTEN, Rec. Trav. Chim., 58 (1939) 193.
- 10. H. J. SEIFERT und F. W. KOKNAT, Z. Anorg. Allgem. Chem., 341 (1965) 269.

Résumé – On a étudié les systèmes TlX/MnX₂ et AgX/MnX₂ (X = Cl, Be, I) par analyse thermique différentielle. Les systèmes AgCl/MnCl₂ et AgI/MnI₂ donnent des eutectiques. AgBr et MnBr₂ forment, à des températures plus élevées, des cristaux partiellement mixtes. On observe la formation de composés dans les systèmes d'halogénures de thallium. La fusion est congruente pour TlMnCl₃ et Tl₄MnI₆, incongruente pour TlMnBr₃ et TlMnI₃. Ces deux derniers composés cristallisent dans le système orthorhombique type NH₄CdCl₃. ZUSAMMENFASSUNG – Die Systeme TlX/MnX₂ und AgX/MnX₂ (X = Cl, Br, J) wurden mittels der Differentialthermoanalyse untersucht. Die Systeme AgCl/MnCl₂ und AgJ/MnJ₂ sind rein eutektisch. AgBr bildet bei höherer Temperatur mit bis zu 20 Mol-% MnBr₂ Mischkristalle. In den Systemen mit Thalliumhalogeniden existieren Verbindungen. TlMnCl₃ und Tl₄MnJ₆ schmelzen kongruent, TlMnBr₃ und TlMnJ₃ inkongruent. Die beiden letztgenannten Verbindungen kristallisieren orthorhombisch im NH₄CdCl₃-Typ.

Резюме — Исследованы системы TlX/MnX₂ и AgX/MnX₂ (X = Cl, Br, I) с помощью дифференциального термического анализа. Системы AgCl/MnCl₂ и AgI/MnI₂ являются чисто эвтектическими. При повышенной температуре AgBr и MnBr₂ образуют частично смешанные кристаллы. В системах с таллием образуются галогениды. TlMnCl₃ и TlMnI₆ плавятся конгруэнтно, TlMnBr₃ и TlMnI₃ — не конгруэнтно. Два последних соединения кристаллизуются в орторомбической системе типа NH₄ CdCl₃.